Substitution Practice

Use a trigonometric substitution to integrate the function $f(x) = x\sqrt{x^2 - 9}$. Check your work by integration using the substitution $u = x^2$.

Substitution Practice

Use a trigonometric substitution to integrate the function $f(x) = x\sqrt{x^2 - 9}$. Check your work by integration using the substitution $u = x^2$.

$$\int x \int x^{2} - 9 \, dx$$

$$= \int \tan \theta \int \tan^{2}\theta - 9 \sec^{2}\theta \, d\theta$$

$$= \int \frac{1}{2} \int u \, du$$

$$= \frac{1}{2} \left(\frac{u^{\frac{3}{2}}}{3/2} \right) + C$$

$$= \frac{(\tan^{2}\theta - 9)^{\frac{3}{2}}}{3} + C$$

$$= \frac{(x^{2} - 9)^{\frac{3}{2}}}{3} + C$$

Model solution substituted for $x = 3 \sec \theta$ and then $u = \tan \theta$, and finally inverse substituting back from $\tan \theta$ into terms of x using the Pythagorean theorem.

Let
$$x = tan \theta$$
.
=7 $dx = sec^2 \theta d\theta$
 $u = tan^2 \theta - \theta$
=) $du = 2tan \theta sec^2 \theta d\theta$

$$N = \chi^{2} = 7 du = 2\chi dz$$

$$\int \chi \sqrt{\chi^{2}-9} dx$$

$$= \frac{1}{2} \int \sqrt{y-9} dy$$

$$= \frac{1}{2} \left(\frac{y-9}{3} \right)^{\frac{3}{2}} + C$$

$$= \frac{(\chi^{2}-9)^{\frac{3}{2}}}{3} + C$$

$$= \frac{(\chi^{2}-9)^{\frac{3}{2}}}{3} + C$$

Model solution checked answer using substitution for $u=x^2-9$ for some reason even though question asked for $u=x^2$.